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Abstract: The Internet of Things is a paradigm that interconnects several smart devices through the
internet to provide ubiquitous services to users. This paradigm and Web 2.0 platforms generate
countless amounts of textual data. Thus, a significant challenge in this context is automatically
performing text classification. State-of-the-art outcomes have recently been obtained by employing
language models trained from scratch on corpora made up from news online to handle text classification
better. A language model that we can highlight is BERT (Bidirectional Encoder Representations
from Transformers) and also DistilBERT is a pre-trained smaller general-purpose language representation
model. In this context, through a case study, we propose performing the text classification task with
two previously mentioned models for two languages (English and Brazilian Portuguese) in different
datasets. The results show that DistilBERT’s training time for English and Brazilian Portuguese was
about 45% faster than its larger counterpart, it was also 40% smaller, and preserves about 96% of
language comprehension skills for balanced datasets.

Keywords: big data; pre-trained model; BERT; DistilBERT; BERTimbau; DistilBERTimbau; transformer-
based machine learning

1. Introduction

It is known that the support of computational systems is in several areas of knowledge,
be it in the human, exact, and biological areas. Consequently, this contributes to the
accelerated increase in the generation, consumption, and transmission of data in the
global network. According to the study by the Statista Research Department [1], in 2018,
the total amount of data created, captured, and consumed in the world was 33 zettabytes
(ZB)—equivalent to 33 trillion gigabytes. Already in 2020 it has grown to 59 ZB and is
expected to reach 175 ZB by 2025.

In the Internet of Things (IoT) context, we know that these devices (e.g., virtual assistants)
are connected to the Internet and generate large amounts of data. On the other hand,
we also have Web 2.0 platforms, e.g., social networks, micro-blogs, and all these types
of websites with massive amounts of textual information available online. It is worth
mentioning that the data generated by these devices and websites are growing faster and
faster. An important point worth mentioning is that the information generated from a
large amount of text/data generated by users for many entrepreneurs or public agents is
vital for maintaining their business. This way, one can exploit this constant and continuous
feedback on a particular subject/product through these data. Due to the ever-increasing
volume of online text data, the text classification task is more necessary than ever. In this
context, text classification (automatically classifying textual) is an essential task.

Automatic text classification can be described as a task that automatically categorizes
group documents into one or more predefined classes according to their topics. Thereby,
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the primary objective of text classification is to extract information from textual resources.
The text classification task is the basic module for many NLP (natural language processing)
applications. However, this necessitates the presence of efficient and flexible methods to
access, organize, and extract useful information from different data sources. These methods
can include text classification [2–4], information retrieval [5,6], summarization [7,8], text
clustering [9,10], and others, collectively named text mining [2,4,6].

Many works are available in the literature on text classification tasks using various
neural network models. Some typical works include convolutional neural network (CNN)
models [11,12], attentional models [13,14], adversarial models [3], and recurrent neural
network (RNN) models [13], which particularly outperform many statistics-based models.
The previously mentioned works represent text based on words, i.e., word vectors pre-trained
over a large-scale corpus are usually used as the sequence features. Such vectors are usually
trained via the word2vec tool [15] or Glove [16,17] algorithm based on the presumption
that similar words tend to appear in similar contexts.

In recent years, to avoid specific structures and significantly decrease the parameters to
be learned from scratch, as is done in the models presented above, some researchers
have contributed in another direction, highlighting the pre-training models for general
language and fine-tuning them to downstream tasks. Another problem with traditional
NLP approaches worth mentioning is the issue of multilingualism [18]. The Open AI
group (https://openai.com/, accessed on 13 July 2022) proposes the GPT (Generative
Pre-trained Transformer) using a left-to-right multi-layer Transformer architecture to learn the
general language presentations from a large-scale corpus to deal with the abovementioned
problems [19]. Later, Google, inspired by GPT, presented a new language representation
called BERT (Bidirectional Encoder Representations from Transformers) [20]. BERT is a
state-of-the-art language representation model designed to pre-train deep bidirectional
representations from unlabeled text and is fine-tuned using labeled text for different
NLP tasks [20]. A smaller, faster, and lighter version of BERT architecture, well-known as
DistilBERT, was implemented by the HuggingFace team (https://github.com/huggingface/
transformers, accessed on 13 July 2022).

This work aimed to examine an extensive dataset from different contexts, including
datasets from different languages, specifically English and Brazilian Portuguese, to analyze
the performance of the two models (BERT and DistilBERT). To do this, we first fine-tuned
BERT and DistilBERT, then the aggregating layer was utilized as the text embedding, and then
we compared the two models with several selected datasets. As a general result, we can
highlight that the DistilBERT is nearly 40% smaller and around 45% faster than its larger
counterpart. Yet, it preserves around 96% of language comprehension skills for both English
and Brazilian Portuguese for balanced datasets.

The main contributions of the paper are as follows:

• We compare BERT and DistilBERT, demonstrating how the Light Transformer model
can be very close in effectiveness compared to its larger model for different languages;

• We compared models Transformer (BERT) and Light Transformer (DistilBERT) for
both English and Brazilian Portuguese.

The rest of the document is organized as follows: Section 2 presents a short summary of
the necessary concepts to understand this work, while Section 3 presents the method and
hyperparameter configuration for automatic text classification. The case study of this work
is presented in Section 4, and the results are presented in Section 5. Thereafter, in Section 6,
we discuss the performance of the two models (BERT and DistilBERT) in the different
datasets used. Finally, Section 7 concludes with a discussion and recommendations for
future work.

2. Theoretical Foundation

This section presents the theoretical foundation for a better understanding of the work.
In Section 2.1, the Transformer architecture is described, while in Section 2.2, Bidirectional
Encoder Representations from Transformers (BERT) is described. In Section 2.3, the

https://openai.com/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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comprehension models are presented, and finally, in Section 2.4, the BERTimbau model
is introduced.

2.1. Transformer Architecture

It is essential to review two concepts: (i) encoder–decoder [21]; and (ii) attention [22]
configurations to understand the Transformer architecture. The first concept refers to the
type of training adopted to produce embeddings from input tokens.

The second is a technique to circumvent a common problem in sequential architectures
applied to natural language processing problems (e.g., recurrent networks [23]). Sequential
networks attempt to map the relationship between a token in the target sequence with
the source sequence tokens. However, a token in the target sequence may be closer to
one or more tokens in the source sequence rather than the entire source sequence. In this
way, the network used to generate the representation of the tokens ends up encoding
information that may not be relevant to the problem at hand. This problem occurs mainly
when the input sequence is long and rich in information and selecting the essential passages
is not possible.

In a few words, the idea of the attention mechanism is to make this selection explicit,
consisting of a neural layer created exclusively to understand this context relationship
between tokens. In this context, Vaswani et al. [19] proposed the Transformer architecture,
an encoder–decoder network based on parallelization of the attention mechanism. In this
network, attention mechanisms generate multiple representations of tokens, where each
representation can refer to a different contextual relationship.

Transformers are based on the traditional architecture of Multilayer Perceptron, making
massive use of attention mechanisms trained under the encoder–decoder configuration.
Figure 1 illustrates the Transformer architecture. The Transformer receives the source and
target sequences, concatenated with positional encodings that help the network understand
the order between the tokens. The boxes with a light gray background on the left and right
represent the encoder and decoder, respectively. Note that the encoder and decoder differ
only in the presence of an additional layer of attention in the decoder. The Transformer
network considers N stacked encoders–decoders, summarized in Figure 1 by the Nx
notation. The embedding produced by the network is taken from its top.

Figure 1. Transformer architecture [19].
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2.2. BERT

Bidirectional Encoder Representations from Transformers is a language model based
on the transformer architecture [20]. BERT is a language model designed to pre-train
bidirectional deep representations from unlabeled text. Its two-way approach aims to
model the context to both the right and the left of a given token. Two essential aspects
of this approach are that, without substantial changes to its architecture, it can be used
(i) pre-trained with or without fine-tuning; and (ii) for tasks that consider individual sentences
or sentence pairs (e.g., natural language inference and semantic textual similarity [24]).

In the BERT architecture, there are two essential stages [20]: (i) pre-training; and
(ii) fine-tuning. In the first stage, the model is trained on a large unlabeled corpus. While
the second one, the model is initialized with the pre-trained data, and all the parameters
are fine-tuned using labeled data for specific tasks.

The architecture of a BERT network can be seen in Figure 2, where the pre-trained
version is shown on the left side, and fine-tuned versions adjusted for different tasks are
shown on the right. The model is trained using unlabeled data from different tasks in the
pre-training stage. In principle, it is possible to use pre-trained BERT models to produce
contextual embeddings that can be used for (un)supervised learning tasks. The model is
initialized with the pre-trained parameters in the second stage, from fine-tuning to given
supervised learning tasks. Then, these parameters are readjusted using data labeled for
the task to be solved. Since fine-tuning is performed by task, each task has an individual
adjusted model, even if they were initialized with the same pre-trained parameters [20].

To handle various tasks, the representation of BERT input can consist of a single
sentence or a pair of sentences. Both possibilities are illustrated at the bottom of the models
shown in Figure 2.

Figure 2. The BERT architecture [20] in a pre-training context (left) or fine-tuning for different
tasks (right).

2.3. Compression of Deep Learning Models

Pre-trained language models (e.g., BERT) have significantly succeeded in various
NLP tasks. However, high storage and computational costs prevent pre-trained language
models from effectively deploying on resource-constrained devices. To overcome this
issue, the compression of deep neural network techniques has been adopted to produce a
model with the same robustness as the pre-training models but requires fewer computational
resources. Through such a technique, it was possible to design distilled (lightweight)
models known as DistilBERT [25].

The compression of the deep neural network is made using knowledge distilling. This
compression technique allows a compact model to be trained to reproduce the behavior of a
larger model. Dilbert (distilled BERT) is a smaller, faster, general-purpose pre-trained version
of BERT that retains nearly the same language comprehension capabilities. The distillation
technique [26] consists of training a model based on a larger model, called the teacher,
which is used to teach the distilled model, called the student, to reproduce the behavior of
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the larger model. Thus, DistilBERT is a lightweight model based on the behavior of the
original BERT model [25].

The main goal is to produce a smaller model able to reproduce the decisions of the
robust bigger model. To do that, it is necessary to approximate the distilled model to the
generated function of the bigger model. This function is used to classify a high quantity of
pseudo data that show the value of each attribute on the distribution independently [27].
A faster and more compact model trained with pseudo data does not risk present overfitting
and will also approximate the learned function from the bigger model [27].

The neural network produces the probability of the classes using a softmax on the
output that converts the logit, zi, calculated for each class into a probability, qi, comparing
it with the other logits.

Neural networks typically produce class probability using a so f tmax output layer that
converts the logit, zi, calculated for each class into a probability, qi, comparing it with the
other logits, see Equation (1).

qi =
exp( zi

T )

∑
j

exp(
zj
T )

(1)

where the T symbol presented refers to the temperature, typically set to 1; using a more
significant value for T, a more soft distributed (soft-target) over the classes is obtained.

In the simplest form of distillation, knowledge is transferred to the distilled model by
training it with a transfer set. Furthermore, a soft-target distribution is used for each case
of the transfer set produced by the larger model with a high value of T in its softmax [26].
The same T with a high value is used to train the distilled model, but temperature 1 is
used after training. At low temperatures, distillation pays much less attention to matching
the results of the logit function, which are much more negative than the average. Thus,
using temperatures more significant than 1, the distilled model extracts more relevant
information from the training dataset [26].

2.4. BERTimbau: BERT Model for Brazilian Portuguese

It is known that pre-trained models such as BERT have high robustness, but this
model is pre-trained with a large amount of English data. To develop a good model
for another language such as Brazilian Portuguese, researchers from NeuralMind (https:
//neuralmind.ai/en/home-en/, accessed on 25 July 2022) developed a BERT model called
BERTimbau [28].

To train the model in the Brazilian Portuguese language, the developers used an
enormous Portuguese corpus called brWaC, which contains 2.68 billion tokens from
3.53 million documents on the Brazilian webpages [28,29].

Two BERTimbau versions were created: in the first one, BERTimbau Base, the weights
were initialized with the checkpoint of Multilingual BERT base, a BERT version trained
to 107 languages [30], and trained the model for four days on a TPU (tensor processing
unit) v3-8 instance [28]. The second version is called BERTimbau Large; the weights were
initialized with the checkpoint of English BERT Large. This version is more significant
than the base version and took seven days to train on the same TPU [28]. The version used
for evaluation in this article was BERTimbau Base. Additionally, a distilled model from
BERTimbau was used and obtained on the HuggingFace Platform (https://huggingface.
co/adalbertojunior/distilbert-portuguese-cased, accessed on 25 July 2022).

3. Method and Hyperparameter Configuration

This section presents the details of our proposed method for automatic text classification
from different languages. The approaches we designed were mainly inspired by the
works of Vaswani et al. [19] and Devlin et al. [20], in which attention mechanisms made
it possible to track the relations between words across very long text sequences in both
forward and reverse directions. Notwithstanding, we explore an extensive dataset from
different contexts, including datasets from different languages, specifically English and

https://neuralmind.ai/en/home-en/
https://neuralmind.ai/en/home-en/
https://huggingface.co/adalbertojunior/distilbert-portuguese-cased
https://huggingface.co/adalbertojunior/distilbert-portuguese-cased
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Brazilian Portuguese, to analyze the performance of the two state-of-the-art models (BERT
and DistilBERT).

Our implementation follows the fine-tuning model released in the BERT project [20].
For the multi-class purpose, we use sigmoid cross entropy with logits function to replace
the original softmax function, which is appropriate for one-hot classification only. To do
this, we first fine-tuned the BERT and DistilBERT, used the aggregating layer as the text
embedding, and compared the two models with several selected datasets.

The methodological details are organized into two subsections. The structural steps
are the following: Section 3.1 presents the details of the hyperparameter configuration for
fine-tuning process, while Section 3.2 presents the environment where the experiments
were performed.

3.1. Hyperparameter Optimization for Fine-Tuning

In this section, we present the hyperparameter optimization for fine-tuning of our work.
All the fine-tuning and evaluation steps performed on each model in this article used the
Simple Transformers Library (https://simpletransformers.ai/docs/usage/ accessed on
1 August 2022). Table 1 reports the details of each hyperparameter configuration for
fine-tuning process.

Table 1. Hyperparameters of the fine-tuned model.

Hyperparameter Value

Batch size 8
Epochs 10

Learning rate 0.00004
Optimizer AdamW

Adam_epsilon 0.00000001
Model class Classification model

Maximum sequence length 128

The BatchSize is a hyperparameter that controls the number of samples from the training
dataset used on each training step. On each step, the predictions are compared with the
expected results, an error is calculated, and the internal parameters of the model are
improved [31].

The second parameter of Table 1, Epochs, controls the number of times the training
dataset will pass through the model during the training process. An epoch has one or
more batches [31]. A high number of epochs can make the model overfit, causing it
not to generalize, so when the model receives unseen data, it will not make a trustful
prevision [32].

Overfitting can be detected in the evaluation step by analyzing the error of the
predictions, as in Figure 3. A low number of epochs can also cause underfitting, which
means that the models still need more training to learn from the training dataset.

Furthermore, the LearningRate is also related to underfitting or overfitting. This
parameter controls how fast the model learns according to the errors obtained. Increasing
the learning rate can bring the model from underfitting to overfitting [33].

The Optimizer determines in what measure the weight and the learning rate should
be changed in order to reduce the losses of the models. The AdamW is a variant of Adam
Optimizer [34]. Adam_epsilon is a parameter used on Adam Optimizer.

The ModelClass refers to the class from the Simple Transformers Library that was used
to fine-tune the models. The maximum sequence length parameter refers to the maximum
size of the sequence of tokens that can be inputted into the model.

Table 2 presents the hyperparameters of the pre-trained models used in this article
for the performance evaluation. The distilled version of the models has six hidden
layers, less than the original BERT and BERTimbau models, demonstrating how much
smaller the distilled models are. Additionally, the DistilBERT model has 50 million fewer

https://simpletransformers.ai/docs/usage/
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parameters than BERT. The author does not provide the number of parameters of the
DistilBERTimbau model.

Figure 3. Overfitting example.

Table 2. Model hyperparameters.

Hyperparameter BERT Base [20] DistilBERT
Base [25]

BERTimbau
Base 1

DistilBERTimbau
Base 2

Hidden layers 12 6 12 6
Total parameters 110 M 66 M 110 M -

1 https://huggingface.co/neuralmind/bert-base-portuguese-cased accessed on 1 August 2022. 2 https://
huggingface.co/adalbertojunior/distilbert-portuguese-cased accessed on 1 August 2022.

3.2. Implementation

A cloud GPU environment (Google Colab Pro https://colab.research.google.com,
accessed on 8 April 2022) was chosen to conduct the fine-tuning process on the models using
the datasets selected; the metrics used to evaluate the models were defined. During the
fine-tuning process, the (Weights and Biases https://wandb.ai/site, accessed on 8 April
2022) tool was used to monitor each training step and the models’ learning process to detect
some overfitting or anything that would bring about poor learning performance.

We trained our models on Google Colab Pro using the hyperparameters described
in Tables 1 and 2. The results were computed and compared between each model to
extract information about their performance, and graphics were built to visualize better and
compare the results.

Furthermore, the K-fold cross-validation method was used, which consists of splitting
the dataset into n folders so that every validation set is different from the others. The K
refers to the number of approximately equal size disjoint subsets, and the fold refers to the
number of subsets created. This splitting step is done by randomly sampling cases from
the dataset without replacement [35].

Figure 4 represents an example from 10-fold cross-validation. Ten subsets were
generated, and each subset is divided into ten parts where nine of them are used to
train Dtrain and the other one to evaluate Dval the model.

Every evaluation part, Dval , differs between the subsets. The model is trained,
evaluated, and then discarded for each subset or fold, so every part of the dataset will
be used for training and evaluation. This allows us to see the potential of the model’s
generalization and prevent overfitting [35,36].

https://huggingface.co/neuralmind/bert-base-portuguese-cased
https://huggingface.co/adalbertojunior/distilbert-portuguese-cased
https://huggingface.co/adalbertojunior/distilbert-portuguese-cased
https://colab.research.google.com
https://wandb.ai/site


Sensors 2021, 22, 8184 8 of 16

Figure 4. A 10-fold cross-validation example.

To evaluate the models, a 5-fold cross-validation was used. So five subsets were
created, and each one was divided into five parts where a fourth of them (80%) are used for
the fine-tuning process Dtrain, and rest (20%) to evaluate Dval .

4. Case Study

This section has been divided into two parts for a better presentation. The first part,
Section 4.1 shows the datasets used in the experiments, while the evaluation metrics are
shown in Section 4.2.

4.1. Datasets

For this case study, different datasets from the English and Portuguese languages were
used. Section 4.1.1 presents the datasets used in the English language, while Section 4.1.2
presents the Brazilian Portuguese ones.

4.1.1. English Language

Three datasets were selected to evaluate the English models. The first one, called the
Brexit Blog Corpus [37], contains 1682 phrases provided by a blog associated with Brexit.
Those phrases are divided into nine classes, as shown in Table 3. This dataset contains
a considerable number of classes and a few examples for each class. It can be seen that
this dataset is unbalanced since some classes have less than 50 samples and others more
than 200. The choice of an unbalanced dataset was purposeful to evaluate the performance
of the chosen models.

Table 3. Brexit Blog Corpus dataset.

ID Classes Number of Examples

0 agreement/disagreement 50
1 certainly 84
2 contrariety 352
3 hypothetically 171
4 necessity 204
5 prediction 252
6 source of knowledge 287
7 tact/rudeness 44
8 uncertainty 196
9 volition 42

Total 1682

The second dataset, called BBC Text, was obtained on Kaggle Platform (https://www.
kaggle.com/) and built from BBC News [38], is made up of 2225 comments divided by
five classes, as presented in the Table 4. Observing the number of classes and the sample
numbers of each class, such a dataset is much more balanced compared to the Brexit Blog
Corpus dataset.

https://www.kaggle.com/
https://www.kaggle.com/
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Table 4. BBC Text dataset.

ID Classes Number of Examples

0 business 510
1 entertainment 386
2 politics 417
3 sport 511
4 tech 401

Total 2225

The last English dataset selected was the Amazon Alexa Reviews Dataset, also obtained
on Kaggle. This dataset contains 3150 feed-backs comments about the Amazon Virtual
Assistant Alexa, containing only two classes, positive and negative, presented in Table 5.

Table 5. Amazon Alexa Reviews dataset.

ID Classes Number of Examples

0 positive 2893
1 negative 257

Total 3150

This dataset contains much fewer negative samples, but contains only two classes.

4.1.2. Brazilian Portuguese Language

To evaluate the Portuguese models, two datasets were selected. The first, called
PorSimples Corpus [39], is a dataset with sentences that passed through different stages of
simplifications task. Table 6 contains the stages and the number of sentences produced for
each stage of simplification. The Original class contains the original sentences, Natural
contains the sentences produced from a Natural stage of simplification of the original
sentences, and Strong has the sentences produced on a strong stage of simplification.
On each stage of simplification the sentence becomes less complex. In the fine-tuning
process, the model will learn the complexity of the sentences and will classify those
sentences on three levels, so sentences more complex will be classified as Original, less
complex sentences as Natural, and simple sentences as Strong.

Table 6. PorSimples Corpus dataset.

ID Classes Number of Examples

0 Original 2907
1 Natural 4066
2 Strong 4971

Total 11,944

The second dataset selected, called Textual Complexity Corpus for School Internships
in the Brazilian Educational System Dataset [40], is a dataset that contains texts divided by
the stages of the Brazilian educational system. The stages of education are divided into
four stages, representing the four classes presented in the Table 7.

Table 7. Textual Complexity Corpus for School Internships in the Brazilian Educational System dataset.

ID Classes Number of Examples

0 Elementary School—I 297
1 Elementary School—II 325
2 High School 628
3 University Education 826

Total 2076
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4.2. Metrics

Four metrics of the evaluation were used to measure the performance of the models.
The first one is accuracy (Equation (2)), which consists of the number of correct and overall
predictions. This metric is the probability that the model predicted the suitable class [41].

Accuracy =
∑ CorrectedPredictions

∑ AllPredictions
(2)

The precision score (Equation (3)) is used to analyze the proportion of true positives that
the model predicted. Precision tells how trustful the model is when predicting a particular
class. The calculation is done by dividing the true positives (TP) by the sum of true positives
(TP) and the false positives (FP) [41].

Precision =
TP

TP + FP
(3)

Additionally, to measure the capability of the model to predict all the positive classes,
the recall score (Equation (4)) is used. The recall score can be provided by dividing the true
positives (TP) by the sum of true positives (TP) and the false negative (FN) [41].

Recall =
TP

TP + FN
(4)

The last metric applied in the experiments is the F1 score (Equation (5)) to measure the
performance of the model. This metric uses the precision score (PS) and recall score (RC) as
a weighted average under the concept of harmonic mean [41].

F1Score = 2 × (
PS × RS
PS + RS

) (5)

It is worth mentioning that all metrics presented have their best score as 1 and their
worst score as 0.

5. Results

This section shows the performance assessment of the BERT, DistilBERT, BERTimbau,
and DistilBERTimbau models. For a better presentation, this section was divided into two
subsections. The first presented the results of the English language (Section 5.1), and the
second presented the results of the Brazilian Portuguese language (Section 5.2).

It is worth mentioning that, after each K-fold iteration, an evaluation is made using
the evaluation part of the dataset to measure the score of the fine-tuned model.

5.1. English Language

Brexit Blog Corpus was the first dataset evaluated. The BERT model’s results are
presented in Table 8 and the DistilBERT model’s results are in Table 9.

Table 8. BERT—Brexit Blog Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.3650 0.3345 0.3290 0.3279 2.558 395 12
2 0.4214 0.4270 0.4017 0.4068 2.497 384 12
3 0.4107 0.3421 0.3495 0.3433 2.516 385 13
4 0.4286 0.3754 0.4223 0.3761 2.320 391 11
5 0.4405 0.4217 0.3909 0.3991 2.256 390 10
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Table 9. DistilBERT—Brexit Blog Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.3561 0.3078 0.2971 0.2981 2.546 205 12
2 0.4154 0.3650 0.3557 0.3494 2.298 208 10
3 0.4137 0.3687 0.3606 0.3537 2.373 205 11
4 0.3750 0.3807 0.3442 0.3506 2.421 199 11
5 0.4048 0.3480 0.3352 0.3378 2.357 201 11

The Brexit Blog Corpus dataset obtained relatively low score results for all metrics
evaluated, see Table 9. This behavior is expected since the dataset used is unbalanced. That
is, many classes and few samples for each class; furthermore, some class has significantly
more or fewer samples than others.

Additionally, the score results obtained by the distilled model of BERT are similar to
those of its original model BERT. Still, the distilled model took around 47.7% less time on
the fine-tuning process than BERT since DistilBERT is a more lightweight model than BERT.

The second English dataset evaluated was the BBC Text. The evaluation score results
are presented in Table 10 for the BERT model and in Table 11 for DistilBERT.

Table 10. BERT—BBC Text dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.9753 0.9742 0.9747 0.9743 0.2062 435 10
2 0.9820 0.9826 0.9810 0.9816 0.1470 438 12
3 0.9820 0.9808 0.9821 0.9812 0.1116 450 13
4 0.9685 0.9685 0.9694 0.9689 0.2923 432 13
5 0.9573 0.9608 0.9540 0.9565 0.3191 438 13

Table 11. DistilBERT—BBC Text dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.9685 0.9680 0.9685 0.9681 0.2478 278 11
2 0.9685 0.9690 0.9705 0.9694 0.2098 269 12
3 0.9775 0.9747 0.9763 0.9754 0.2041 266 13
4 0.9753 0.9758 0.9763 0.9760 0.2039 266 13
5 0.9888 0.9877 0.9879 0.9876 0.0955 277 13

Unlike the Brexit Blog Corpus dataset, the BBC Text achieved outstanding score results.
It is known that this dataset is balanced, having a good and uniform number of samples
for each class. Comparing the two models, the evaluation results are very similar, but the
fine-tuning time is around 37.3% lower for DistilBERT compared to BERT.

The last English dataset evaluated was Amazon Alexa Review Dataset. The BERT
model’s score result are presented on Tables 12 and 13 for DistilBERT model.

Table 12. BERT—Amazon Alexa Review dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.9651 0.8998 0.8377 0.8656 0.2050 665 12
2 0.9587 0.9191 0.7766 0.8304 0.2890 663 13
3 0.9508 0.8299 0.8109 0.8201 0.3314 663 14
4 0.9619 0.8523 0.8667 0.8593 0.2755 666 14
5 0.9508 0.9305 0.7919 0.8443 0.3640 666 14
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Table 13. DistilBERT—Amazon Alexa Review dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.9603 0.8902 0.8065 0.8423 0.2431 324 09
2 0.9492 0.8725 0.8016 0.8323 0.3847 314 10
3 0.9413 0.8803 0.7228 0.7763 0.4456 319 11
4 0.9571 0.8369 0.8298 0.8333 0.3127 317 11
5 0.9619 0.9344 0.7966 0.8469 0.2698 318 11

The Amazon Alexa Reviews dataset reached good results. Analyzing Tables 12 and 13,
it is possible to note that the precision, recall, and F1-score are a little lower than the
accuracy score. Those results may occur because the dataset has fewer examples for the
negative class and a very high number of samples for the positive class.

The BERT and DistilBERT score results were also very similar when compared. The DistilBERT
model took around 52.1% less time to fine-tune when compared to its larger counterpart.

5.2. Brazilian Portuguese Language

In order to evaluate the Portuguese model BERTimbau and the distilled version
DistilBERTimbau, the first Portuguese dataset selected was the Textual Complexity Corpus
for School Internships in the Brazilian Educational System Dataset (TCIE). The BERTimbau
score results are presented in Table 14 and the DistilBERTimbau results in Table 15.

Table 14. BERTimbau—TCIE dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.9351 0.9232 0.9280 0.9233 0.3477 418 12
2 0.9325 0.9227 0.9194 0.9206 0.4158 408 12
3 0.9301 0.9172 0.9193 0.9181 0.3752 421 13
4 0.9422 0.9375 0.9395 0.9384 0.3229 414 14
5 0.9253 0.9211 0.9168 0.9186 0.5360 241 13

Table 15. DistilBERTimbau—TCIE dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.9135 0.9060 0.9087 0.9072 0.5106 299 13
2 0.9277 0.9137 0.9180 0.9148 0.4370 289 15
3 0.9253 0.9025 0.9051 0.9024 0.3878 291 14
4 0.9181 0.9026 0.8990 0.9006 0.4631 307 15
5 0.9036 0.8822 0.8783 0.8797 0.6200 308 14

The TCIE dataset accomplished good results. Looking over Tables 14 and 15, it is
possible to note that the distilled model had an evaluation score slightly lower than the
BERTimbau model on every metric, but the fine-tuning process took around 21.5% longer
on BERTimbau than the distilled version.

The second Portuguese dataset used was the PorSimples Corpus. For this dataset,
the parameters used on the other datasets presented in Table 1 caused overfitting. A lower
number of the learning rate hyperparameter was used to correct this issue, 0.000001
instead of 0.00004. This reduces the model’s learning speed, solving the overfitting issue.
The BERTimbau results are presented in Table 16 and the DistilBERTimbau evaluation score
results are presented in Table 17.

The evaluation result with this dataset did not achieve very high scores in both the
BERTimbau and DistilBERTimbau models. These low results may be explained because,
on the PorSimples Corpus dataset, some sentences are similar to the others when passing
through the simplifications process, so similar sentences are presented in each dataset class.
Hence, the model has more challenges when learning the class differences. Additionally,
the BERTimbau model took around 49.2% more time than the distilled model to the
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fine-tuning process. Furthermore, the high time results presented in Tables 16 and 17
were expected since this dataset has 11,944 samples, many more when compared to the
other datasets.

Table 16. BERTimbau—PorSimples Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.5184 0.4948 0.5056 0.4690 0.9385 2162 25
2 0.5126 0.4824 0.4881 0.4679 0.9665 2159 25
3 0.5008 0.4737 0.4912 0.4518 0.9543 2170 26
4 0.5021 0.4813 0.4892 0.4634 0.9647 2173 24
5 0.5050 0.4681 0.4718 0.4483 0.9768 2198 27

Table 17. DistilBERTimbau—PorSimples Corpus dataset.

K-Fold Accuracy Precision Recall F1 Score Evaluation
Loss

Training
Time

Evaluation
Time

1 0.5038 0.4797 0.4801 0.4520 0.9635 1099 15
2 0.5067 0.4697 0.4837 0.4449 0.9559 1098 17
3 0.5226 0.4889 0.5030 0.4687 0.9311 1095 18
4 0.5251 0.4892 0.4968 0.4721 0.9428 1126 18
5 0.5008 0.4794 0.4853 0.4446 0.9746 1103 17

Table 18 contains the size of the models generated after the fine-tuning process for each
dataset. Analyzing the results, it is possible to identify that the distilled models produced
models around 40% smaller than their larger counterparts.

Table 18. Model Size.

Dataset BERT DistilBert

Amazon Alexa Review 413.3 MB 251 MB
BBC Text 413.3 MB 251 MB

Brexit Blog Corpus 413.3 MB 251 MB
TCIE 415.6 MB 253.4 MB

PorSimples Corpus 415.6 MB 253.3 MB

An important observation is that on every evaluation, the scores reached on every
k-fold iteration had very similar results, which show the model’s generalization capability.

The barplot presented in Figure 5 contains the arithmetic mean of each scoring metric
on each k-fold iteration. In this figure, the red bars refer to BERT/BERTimbau models,
and the blue ones to DistilBERT/DistilBERTimbau models.

As we can see, the score recorded by the distilled models is very similar to the ones
scored by the original models. This shows the power of the compression of deep learning
models technique, which produces smaller models, requires fewer computation resources,
and has almost the same power as the original models.

Figure 5. Bar plot comparing BERT and DistilBERT’s model scores.
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6. Discussion

Analyzing the results presented in Section 5 and Figure 5, the scores recorded by
the distilled models are very similar to the ones scored by the original models. In our
experiments, they were around 45% faster in the fine-tuning process, about 40% smaller,
and also preserving about 96% of the language comprehension skills performed by BERT and
BERTimbau. It is worth noting that these results are similar to the results presented on [25],
where the DistilBERT models were 40% smaller, 60% faster, and retained 97% of BERT’s
comprehension capability.

The work presented in [42] compared BERT, DistilBERT, and other pre-trained models
for emotion recognition and also achieved similar score results on BERT and DistilBERT.
Furthermore, the DistilBERT model was the fastest one. These results presented in that
work and also in the literature show the power of the compression of deep learning models
technique, which produces smaller models, requires fewer computation resources, and has
almost the same power as the original models.

Another critical point we can highlight in Figure 5 is the importance of the quality of
the datasets to produce a good predicted model. In two unbalanced datasets, such as Brexit
Blog Corpus and PorSimples Corpus, the accuracy was low against the other balanced
datasets. The Amazon Alexa Reviews achieve good accuracy, but lower precision, recall,
and F1 score since this dataset has a low number of negative samples.

Other pre-trained models have been widely developed for other languages such as
BERTino [43], an Italian DistilBERT, and CamemBERT [44] for the French language based
on the RoBERTa [45] model, a variation of the BERT model. The main goal of pre-trained
models is to remove the necessity of building a specific model for each task and to improve
the necessity of developing a pre-trained model for each language, bigger models that
understand multiple languages have been developed such as BERT Multilingual [30] and
also GPT-3 [46]. Still, those models are trained with more data than BERT for specific
languages, especially GPT-3, and should require more computational resources.

7. Conclusions

Inspired by a state-of-the-art language representation model, this paper analyzed two
state-of-the-art models, BERT and DistilBERT, for text classification tasks for both English
and Brazilian Portuguese. These models have been compared with several selected datasets.
The experiment results showed that the compression of neural networks responsible for the
generation of the DistilBERT and DistilBERTimbau produce models around 40% smaller and
take around 45% (our experiments ranged from 21.5% to 66.9%) less time for the fine-tuning
process. In other words, compression models require fewer computational resources,
which did not significantly impact the model’s performance. Thus, the lightweight models
allow being executed with low computational resources and with the performance of their
larger counterparts. In addition, the distilled models preserve about 96% of language
comprehension skills for balanced datasets.

Some extensions of our future work can be highlighted: (i) other robust models are
being widely studied and developed, such as in [47] and GPT-3 [46], which can be evaluated
and compared with the models mentioned in this work; and (ii) perform task classification
for non-Western languages (e.g., Japanese, Chinese, and Korean).

In closing, the experiment results show how robust the Transformer architecture is and
the possibility of using it for more languages than English, such as the Brazilian Portuguese
models studied in this work.
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