• English
    • português (Brasil)
  • English 
    • English
    • português (Brasil)
  • Login
View Item 
  •   DSpace Home
  • Produção acadêmica e científica
  • Artigos de periódicos
  • Publicações
  • View Item
  •   DSpace Home
  • Produção acadêmica e científica
  • Artigos de periódicos
  • Publicações
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards transfer learning techniques—BERT, DistilBERT, BERTimbau, and DistilBERTimbau for automatic text classification from different languages: A case study

View/Open
Barbon, Rafael Silva - Towards Transfer Learning.pdf (553.0Kb)
Alternative Title
Rumo a técnicas de aprendizagem por transferência - BERT, DistilBERT, BERTimbau e DistilBERTimbau para classificação automática de texto de diferentes idiomas: um estudo de caso
Author
Barbon, Rafael Silva
Akabane, Ademar Takeo
Date
26/10/2022
Content Type
Artigo
Postgraduate Program
Sistemas de Infraestrutura Urbana
Access rights
Acesso aberto
Metadata
Show full item record
Abstract
The Internet of Things is a paradigm that interconnects several smart devices through the internet to provide ubiquitous services to users. This paradigm and Web 2.0 platforms generate countless amounts of textual data. Thus, a significant challenge in this context is automatically performing text classification. State-of-the-art outcomes have recently been obtained by employing language models trained from scratch on corpora made up from news online to handle text classification better. A language model that we can highlight is BERT (Bidirectional Encoder Representations from Transformers) and also DistilBERT is a pre-trained smaller general-purpose language representation model. In this context, through a case study, we propose performing the text classification task with two previously mentioned models for two languages (English and Brazilian Portuguese) in different datasets. The results show that DistilBERT’s training time for English and Brazilian Portuguese was about 45% faster than its larger counterpart, it was also 40% smaller, and preserves about 96% of language comprehension skills for balanced datasets.
Keywords
Big data
Pre-trained model
BERT
DistilBERT
BERTimbau
DistilBERTimbau
Transformerbased machine learning
Language
English
Sponsor
Não recebi financiamento
Collections
  • Publicações

Pontifícia Universidade Católica de Campinas
Pontifícia Universidade Católica de Campinas
Contact Us | Send Feedback

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Pontifícia Universidade Católica de Campinas
Pontifícia Universidade Católica de Campinas
Contact Us | Send Feedback